Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (7): 53-62.doi: 10.3969/j.issn.2097-0706.2024.07.007
• Energy Storage Technology • Previous Articles Next Articles
DOU Zhenlan1(), LI Jiawen1(
), ZHANG Chunyan1, CAI Zhenqi1, YUAN Benfeng2, JIA Kunqi1, XIAO Guoping2, WANG Jianqiang2
Received:
2024-04-17
Revised:
2024-06-14
Published:
2024-07-25
Supported by:
CLC Number:
DOU Zhenlan, LI Jiawen, ZHANG Chunyan, CAI Zhenqi, YUAN Benfeng, JIA Kunqi, XIAO Guoping, WANG Jianqiang. Spatiotemporal distributed parameter modeling of solid oxide electrolysis cells[J]. Integrated Intelligent Energy, 2024, 46(7): 53-62.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.07.007
Table 1
Model input parameters
参数 | 数值 |
---|---|
电池长度L/cm | 10 |
电池宽度b/cm | 10 |
电池片厚度hs/um | 215 |
连接体厚度hl/mm | 1 |
阴极流道高度hc/mm | 1 |
阳极流道高度ha/mm | 1 |
电池片辐射系数σs/m | 0.8 |
电池片比定压热容cp,s/[J·(kg·K)-1] | 500 |
电池片密度ρs/(kg·m-3) | 5 900 |
连接体辐射系数σl | 0.1 |
连接体比定压热容cp,l/[J·(kg·K)-1] | 500 |
连接体密度ρl/(kg·m-3) | 8 000 |
阴极入口温度/℃ | 750 |
阴极气体组分 | y(H2)=10%,y(H2O)=90% |
阴极入口压力pc,in/kPa | 100 |
阳极入口温度/℃ | 750 |
阳极气体组分 | y(N2)=79%,y(O2)=21% |
阳极入口压力pa,in/kPa | 100 |
[1] | CHEN K, LIU S S, AI N, et al. Why the solid oxide cells can be reversibly operated under solid oxide electrolysis cell and fuel cell modes?[J]. Physical Chemistry Chemical Physics, 2015, 17(46): 31308-31315. |
[2] |
葛磊蛟, 崔庆雪, 李明玮, 等. 风光波动性电源电解水制氢技术综述[J]. 综合智慧能源, 2022, 44(5): 1-14.
doi: 10.3969/j.issn.2097-0706.2022.05.001 |
GE Leijia, CUI Qingxue, LI Mingwei, et al. Review on water electrolysis for hydrogen production powered by fluctuating wind power and PV[J]. Integrated Intelligent Energy, 2022, 44(5): 1-14.
doi: 10.3969/j.issn.2097-0706.2022.05.001 |
|
[3] | LI G L, YUAN B F, GE M, et al. Capacity configuration optimization of a hybrid renewable energy system with hydrogen storage[J]. International Journal of Green Energy, 2022: 1-17. |
[4] | 朱雷杰, 钱彬, 郭凯凯, 等. 核能制氢可再生能源技术研究[J]. 中国资源综合利用, 2023, 41(1):95-98. |
ZHU Leijie, QIAN Bin, GUO Kaikai, et al. Study on renewable energy technology of nuclear hydrogen production[J]. China Resources Comprehensive Utilization, 2023, 41(1): 95-98. | |
[5] | AKULA P, ESLICK J, BHATTACHARYYA D, et al. Model development, validation, and optimization of an MEA-based post-combustion CO2 capture process under part-load and variable capture operations[J]. Industrial & Engineering Chemistry Research, 2021, 60(14): 5176-5193. |
[6] |
韩倩雯, 张琨, 陈晓阳, 等. La/Ni共掺杂SrTi0.35Fe0.65O3-δ对称电极用于SOEC共电解H2O/CO2研究[J]. 综合智慧能源, 2022, 44(8): 43-49.
doi: 10.3969/j.issn.2097-0706.2022.08.004 |
HAN Qianwen, ZHANG Kun, CHEN Xiaoyang, et al. Study on La/Ni co-doped SrTi0.35Fe0.65O3-δ symmetric electrode for H2O/CO2 co-electrolysis in SOECs[J]. Integrated Intelligent Energy, 2022, 44(8): 43-49.
doi: 10.3969/j.issn.2097-0706.2022.08.004 |
|
[7] | SHAO X, BUDIMAN R A, SATO T, et al. Review of factors affecting the performance degradation of Ni-YSZ fuel electrodes in solid oxide electrolyzer cells[J]. Journal of Power Sources, 2024, 609: 234651. |
[8] | STOOTS C M, O'BRIEN J E, MCKELLAR M G, et al. Engineering process model for high-temperature electrolysis system performance evaluation[C]// AIChE 2005 Annual Meeting, 2005. |
[9] | NI M, LEUNG M K H, LEUNG D Y C. Parametric study of solid oxide steam electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2305-2313. |
[10] | NI M, LEUNG M K H, LEUNG D Y C. Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production[J]. Electrochimica Acta, 2007, 52(24): 6707-6718. |
[11] | IORA P, TAHER M A A, CHIESA P, et al. A one dimensional solid oxide electrolyzer-fuel cell stack model and its application to the analysis of a high efficiency system for oxygen production[J]. Chemical Engineering Science, 2012, 80: 293-305. |
[12] | MENON V, JANARDHANAN V M, DEUTSCHMANN O. A mathematical model to analyze solid oxide electrolyzer cells(SOECs) for hydrogen production[J]. Chemical Engineering Science, 2014, 110: 83-93. |
[13] | UDAGAWA J, AGUIAR P, BRANDON N P. Hydrogen production through steam electrolysis: Model-based dynamic behaviour of a cathode-supported intermediate temperature solid oxide electrolysis cell[J]. Journal of Power Sources, 2008, 180(1): 46-55. |
[14] | HAWKES G L, O'BRIEN J E, STOOTS C M, et al. CFD model of a planar solid oxide electrolysis cell for hydrogen production from nuclear energy[J]. Nuclear Technology, 2005, 158(2): 132-144. |
[15] | NAVASA M, YUAN J L, SUNDÉN B. Computational fluid dynamics approach for performance evaluation of a solid oxide electrolysis cell for hydrogen production[J]. Applied Energy, 2015, 137: 867-876. |
[16] | KANG J, PARK J, BAE J. Three-dimensional numerical analysis of solid oxide electrolysis cells steam electrolysis operation for hydrogen production[J]. Journal of Fuel Cell Science Technology, 2015, 12(5): 51006. |
[17] | YAN P Y, CEHNG C H, SU A, et al. Simulation study of hydrogen production through solid oxide electrolysis cell[C]// 2011 International Conference on Electrical and Control Engineering. ICECE, 2011:4075-4078. |
[18] | NAPOLI G, FERRARO M, BRUNACCINI G, et al. Data Driven model for a fuel cell stack development in a complex multi-source hybrid renewable energy system[C]// International Conference on Renewable Energies and Power Quality. ICREPQ, 2010:983-988. |
[19] | NAPOLI G, FERRARO M, SERGI F, et al. Data driven models for a PEM fuel cell stack performance prediction[J]. International Journal of Hydrogen Energy, 2013, 38(26): 11628-11638. |
[20] | WU Y M, BREAZ E, GAO F, et al. A Modified relevance vector machine for PEM fuel-cell stack aging prediction[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 2573-2581. |
[21] | HAN I S, CHUNG C B. Performance prediction and analysis of a PEM fuel cell operating on pure oxygen using data-driven models: A comparison of artificial neural network and support vector machine[J]. International Journal of Hydrogen Energy, 2016, 41(24):10202-10211. |
[22] | DENG H W, HU W H, CAO D, et al. Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression[J]. Energy, 2022, 244:122569. |
[23] | DOLENC B, BOSKOSKI P, STEPANCIC M, et al. State of health estimation and remaining useful life prediction of solid oxide fuel cell stack[J]. Energy Conversion and Management, 2017, 148: 993-1002. |
[24] | MARRA D, SORRENTINO M, PIANESE C, et al. A neural network estimator of solid oxide fuel cell performance for on-field diagnostics and prognostics applications[J]. Journal of Power Sources, 2013, 241(1): 320-329. |
[25] | WU X J, YE Q W. Fault diagnosis and prognostic of solid oxide fuel cells[J]. Journal of Power Sources, 2016, 321(30): 47-56. |
[26] | GRONDIN D, DESEURE J, OZIL P, et al. Solid oxide electrolysis cell 3D simulation using artificial neural network for cathodic process description[J]. Chemical Engineering Research and Design, 2013, 91(1): 134-140. |
[27] | CHI Y, YOKOO K, NAKAJIMA H, et al. Optimizing the homogeneity and efficiency of a solid oxide electrolysis cell based on multiphysics simulation and data-driven surrogate model[J]. Journal of Power Sources, 2023, 562: 232760. |
[28] | LU X J, ZOU W, HUANG M H. A novel spatiotemporal LS-SVM method for complex distributed parameter systems with applications to curing thermal process[J]. IEEE Transactions on Industrial Informatics, 2017, 12(3): 1156-1165. |
[29] | CAI Q, ADJIMAN C S, BRANDON N P. Optimal control strategies for hydrogen production when coupling solid oxide electrolysers with intermittent renewable energies[J]. Journal of Power Sources, 2014, 268: 212-224. |
[1] | LI Yanhong, SHEN Mingzhong, ZHENG Liming, YE Jun. Review on single atom catalysts for hydrogen production from water electrolysis [J]. Integrated Intelligent Energy, 2023, 45(3): 74-80. |
[2] | HAN Shiwang, ZHAO Ying, ZHANG Xingyu, XUAN Chengbo, ZHAO Tiantian, HOU Xukai, LIU Qianqian. Researches on hydrogen storage peak-shaving technology for new power systems to achieve carbon neutrality [J]. Integrated Intelligent Energy, 2022, 44(9): 20-26. |
[3] | HAN Qianwen, ZHANG Kun, CHEN Xiaoyang, ZHU Tenglong. Study on La/Ni co-doped SrTi0.35Fe0.65O3-δ symmetric electrode for H2O/CO2 co-electrolysis in SOECs [J]. Integrated Intelligent Energy, 2022, 44(8): 43-49. |
[4] | Yating GUO, Tianyin DENG, Yanying LIU, Guangli HE. Research on the performance of membranes and anode materials in alkaline water electrolysis [J]. Integrated Intelligent Energy, 2022, 44(5): 64-68. |
[5] | Leijiao GE, Qingxue CUI, Mingwei LI, Fang YAO, Xiaona YANG, Tianshuo DU. Review on water electrolysis for hydrogen production powered by fluctuating wind power and PV [J]. Integrated Intelligent Energy, 2022, 44(5): 1-14. |
[6] |
CHEN Zhao.
Economic analysis under different control mode of M701F4 gas turbine unit
[J]. Huadian Technology, 2017, 39(12): 21-26.
|
[7] | PANG Xishu. Design of temperature control system of extruding machine of honeycomb fashion denitration catalyst [J]. Huadian Technology, 2015, 37(3): 71-72. |
[8] | CHEN Zengji;LI Qiufeng. Optimization of main steam temperature and reheat steam temperature control system [J]. Huadian Technology, 2012, 34(7): 14-16. |
[9] | ZHAO Yong. Control strategy for drum water level and steam temperature of heat recovery boiler of S109FA gas turbineZHAO Yong [J]. Huadian Technology, 2010, 32(7): 42-44. |
[10] | HUANG Chao. Temperature control for concrete hyperbolic arch dam [J]. Huadian Technology, 2009, 31(6): 18-23. |
[11] | HU Wei-hua;PANG Chong-lin;HU Jun. Calculation and control of the Dam concrete temperature in Hydro-Power Station [J]. Huadian Technology, 2008, 30(10): 37-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||